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Lecture 8

15. The EM-algorithm

The EM-algorithm (Expectation-Maximization algorithm) is an iterative proce-
dure for computing the maximum likelihood estimator when only a subset of the
data is available. The first proper theoretical study of the algorithm was done
by Dempster, Laird, and Rubin (1977). The EM algorithm is extensively used
throughout the statistics literature. We will give an overview on how it works.

Let X = (X1, . . . , Xn) be a sample with conditional density fX|Θ(x | θ) given
Θ = θ. We will write

l(θ;X) = log fX|Θ(X | θ)

for the log-likelihood function. The EM-algorithm is used when we do not have a
complete data set of observations from X . We will assume that the data X consists
of observed variables Y = (Y1, . . . , Yk) and unobserved (missing or latent variables)
Z = (Z1, . . . , Zn−k). We write X = (Y, Z). With this notion the log-likelihood
function for the observed data Y is

lobs(θ;Y ) = log

∫

fX|Θ(Y, z | θ)νz(dz).

The problem here is that when maximizing the likelihood we have to compute the
integral and this can be difficult. We might not be able to find a closed form
expression for lobs(θ;Y ). To maximize lobs(θ;Y ) with respect to θ the idea is to do
an iterative procedure where each iteration has two steps, called the E-step and the
M -step. Let θ(i) denote the estimate of Θ after the ith step. Then the two steps
in the (i + 1)th iteration are

E-step: Compute Q(θ | θ(i)) = Eθ(i) [l(θ;X) | Y ].
M -step: Maximize Q(θ | θ(i)) with respect to θ and put θ(i+1) = argmax Q(θ | θ(i)).

This procedure is iterated until it converges.

15.1. A Multinomial example. This is one of the original illustrating examples
for the use of the EM algorithm. One considers data in which 197 animals are
distributed multinomially into four categories with cell-probabilities (1/2+θ/4, (1−
θ)/4, (1− θ)/4, θ/4) for some unknown θ ∈ [0, 1]. The observed number in each cell
was Y = y = (125, 18, 20, 34). The density of the observed data is

fY |Θ(y | θ) =
n!
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The log-likelihood function is then

l(θ, y) = c+ y1 log(2 + θ) + (y2 + y3) log(1− θ) + y4 log θ.

Differentiating w.r.t. θ we get that the score is

∂θl(θ, y) =
y1

1− θ
−

y2 + y3
1− θ

+
y4
θ

and the Fisher information is

I(θ) = −∂2
θ l(θ, y) =

y1
(2 + θ)2

+
y2 + y3
(1− θ)2

+
y4
θ2

.

Although the log-likelihood can be maximized explicitly we use the example to il-
lustrate the EM algorithm. To view the problem as an unobserved data problem
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we would think of it as a multinomial experiment with five categories with observa-
tions x = (y11, y12, y2, y3, y4, y5), each with cell probability (1/2, θ/4, (1− θ)/4, (1−
θ)/4, θ/4). That is, we split the first category into two, and we can only observe the
sum y1 = y11+ y12. Then y11 and y12 are considered as the unobservable variables.
The complete likelihood for the data is then

fX|Θ(y11, y12, y2, y3, y4 | θ) =
n!

y11!y12!y2!y3!y4!
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and the log-likelihood is (apart from a term not involving θ)

l(θ, y11, y12, y2, y3, y4) = (y12 + y4) log θ + (y2 + y3) log(1− θ).

Since y12 is unobservable we cannot maximize this directly. This obstacle is over-
come by the E-step.

Let θ(0) be an initial guess for θ. The E-step requires computation of

Q(θ | θ(0)) = Eθ(0) [l(θ, Y11, Y12, Y2, Y3, Y4) | Y1, . . . , Y4]

= Eθ(0) [(Y12 + Y4) log θ + (Y2 + Y3) log(1− θ) | Y1, . . . , Y4]

= (Eθ(0) [Y12 | Y1] + Y4) log θ + (Y2 + Y3) log(1− θ).

Thus, we need to compute the conditional expectation of Y12 given Y11 given Θ =
θ(0). But this is a Binomial distribution with sample size Y1 and parameter p =
(θ(0)/4)/(1/2 + θ(0)/4). Hence, the expected value is

Eθ(0) [Y12 | Y1] =
Y1θ

(0)

2 + θ(0)
:= y

(0)
12

and the expression for Q(θ | θ(0)) is

Q(θ | θ(0)) = (y
(0)
12 + y4) log θ + (y2 + y3) log(1− θ).

In the M -step we maximize this with respec to θ to get

θ(1) =
y
(0)
12 + y4

y
(0)
12 + y2 + y3 + y4

.

Then, iterating this gives us finally the estimate for θ. Summarizing, we get the
iterations

θ(i+1) =
y
(i)
12 + y4

y
(i)
12 + y2 + y3 + y4

where

y
(i)
12 =

y1θ
(i)

2 + θ(i)
.

15.2. Exponential families. The EM-algorithm is particularly easy for regular
exponential families.

If fX|Θ(x | θ) form a regular exponential family with natural parameter Θ then

fX|Θ(x | θ) = c(θ)h(x) exp
{

k
∑

j=1

θjtj(x)
}
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Recall that

Eθ[tj(X)] = −∂θj log c(θ),

covθ[tj(X)tk(X)] = (IX(θ))jk = −∂θj∂θk log c(θ).

The log-likelihood of X is then (ignoring terms that do not depend on θ)

l(θ,X) = log c(θ) +
k

∑

i=1

θjtj(X).

Then, observing Y and with Z as unobserved such that X = (Y, Z) we get

Q(θ | θ(i)) = log c(θ) +

k
∑

j=1

θjt
(i)
j

with

t
(i)
j (Y ) = Eθ(i) [tj(Y, Z) | Y ].

Maximizing Q(θ | θ(i)) with respect to θ leads, by differentiation, to taking θ(i+1)

by solving

0 = ∂θjQ(θ | θ(i)) = ∂θj log c(θ) + t
(i)
j (Y ) j = 1, . . . , k.

That is, find θ(i+1) such that

Eθ(i+1) [tj(X)] = t
(i)
j j = 1, . . . , k.

15.3. Why it works. To give a heuristic explanation why the algorithm works
one can argue as follows. First note that what we want originally is to maximize

the log-likelihood lobs(θ, Y ) of the observations. For this we want to find a θ̂ which
solves ∂θj lobs(θ, Y )|

θ=θ̂
= 0 j = 1, . . . , k. We will show that if θ(i) coming from

the algorithm converges to some θ∗ then this θ∗ satisfies ∂θj lobs(θ, Y )|θ=θ∗ = 0
j = 1, . . . , k which is exactly what we want.

To see this note that the complete likelihood is, x = (y, z),

l(θ, x) = log fX|Θ(x | θ) = log fZ|Y,Θ(z | y, θ) + log fY |Θ(y | θ).

Then

Q(θ | θ(i)) =

∫

log fZ|Y,Θ(z | y, θ)fZ|Y,Θ(z | y, θ(i))νz(dz) + lobs(θ, Y ).

Differentiating w.r.t. θj and putting equal to 0 in order to maximize Q gives

0 = ∂θjQ(θ | θ(i)) =

∫

∂θjfZ|Y,Θ(z | y, θ)

fZ|Y,Θ(z | y, θ)
fZ|Y,Θ(z | y, θ(i))νz(dz) + ∂θj lobs(θ, Y ).

If θ(i) → θ∗ then we have for θ∗ that (with j = 1, . . . , k)

0 = ∂θjQ(θ∗ | θ∗)

=

∫

∂θjfZ|Y,Θ(z | y, θ∗)

fZ|Y,Θ(z | y, θ∗)
fZ|Y,Θ(z | y, θ∗)νz(dz) + ∂θj lobs(θ

∗, Y )

= ∂θj

∫

fZ|Y,Θ(z | y, θ∗)νz(dz) + ∂θj lobs(θ
∗, Y )

= ∂θj lobs(θ
∗, Y ).
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Hence, θ∗ satisfies the desired equation. To actually prove that the EM-algorithm
works we need to show that the sequence θ(i) actually converges to some θ∗. This
is usually done it two steps.

In the first step we show that the sequence lobs(θ
(i), Y ) is non-decreasing. If it

is also bounded, then it converges. It should be noted that it may converge to a
local maximum, and not necessarily to a global maximum. In practice one would
typically choose different initial values θ(0) to see if there seems to be several local
maximima. In the second step we show that lobs(θ

(i), Y ) → l∗ implies θ(i) → θ∗.
This second step requires stronger assumoptions than the first step.

Proposition 3. The sequence lobs(θ
(i), Y ) in the EM-algorithm is nondecreasing.

Proof. We write X = (Y, Z) for the complete data, with Y the observed data and
Y the unobserved data. Then

fZ|Y,Θ(Z | Y, θ) =
fX|Θ((Y, Z) | θ)

fY |Θ(Y | θ)
.

Hence,

lobs(θ, Y ) = log fY |Θ(Y | θ) = log fX|Θ((Y, Z) | θ)− log fZ|Y,Θ(Z | Y, θ).

Taking conditional expectation given Y and Θ = θ(i) on both sides yields

lobs(θ, Y ) = Eθ(i) [lobs(θ, Y ) | Y ]

= Eθ(i) [log fX|Θ((Y, Z) | θ) | Y ]− Eθ(i) [log fZ|Y,Θ(Z | Y, θ) | Y ]

= Q(θ | θ(i))−H(θ | θ(i)),

with

H(θ | θ(i)) = Eθ(i) [log fZ|Y,Θ(Z | Y, θ) | Y ].

Then we have

lobs(θ
(i+1), Y )− lobs(θ

(i), Y ) = Q(θ(i+1) | θ(i))−Q(θ(i) | θ(i))− [H(θ(i+1) | θ(i))−H(θ(i) | θ(i))].

Since θ(i+1) maximizes Q(θ | θ(i)) the first term is nonnegative. For the second term
we have, for any θ, by Jensen’s inequality for concave functions (log is concave)

H(θ | θ(i))−H(θ(i) | θ(i)) = Eθ(i)

[

log
( fZ|Y,Θ(Z | Y, θ)

fZ|Y,Θ(Z | Y, θ(i))

) ∣

∣

∣
Y
]

≤ logEθ(i)

[ fZ|Y,Θ(Z | Y, θ)

fZ|Y,Θ(Z | Y, θ(i))

∣

∣

∣
Y
]

= log

∫

fZ|Y,Θ(z | Y, θ)

fZ|Y,Θ(z | Y, θ(i))
fZ|Y,Θ(z | Y, θ(i))νz(dz)

= log 1 = 0.

This shows lobs(θ
(i+1), Y )− lobs(θ

(i), Y ) ≥ 0. �

This proposition is the main ingredient in the following theorem due to Wu
(1983). We also need the following assumptions:

• Ω is a subset of Rk.
• Ωθo = {θ ∈ Ω : l((θ, y) ≥ l(θo, y)} is compact for any l(θo, y) > −∞.
• l(θo, x) is continuous and differentiable in the interior of Ω.
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Theorem 22. Suppose that Q(θ | φ) is continuous in both θ and φ. Then all limit

points of any instance {θ(i)} of the EM algorithm are stationary points, i.e. θ∗ =
argmaxQ(θ | θ∗), and l(θ(i), y) converges monotonically to some value l∗ = l(θ∗, y)
for some stationary point θ∗.

To show that θ(i) converges to some θ∗ we can use the next theorem.

Theorem 23. Assume the hypothesis of Theorem 22. Suppose in addition that

∂θQ(θ | φ) is continuous in θ and φ. Then θ(i) converges to a stationary point θ∗

with l(θ∗, y) = l∗, the limit of l(θ(i)) if either

{θ : l(θ, y) = l∗} = {θ∗}

or |θ(i+1) − θ(i)| → 0 and {θ : l(θ, y) = l∗} is discrete.

In the case the likelihood is unimodal everything simplifies.

Corollary 1. Suppose l(θ, y) is unimodal in Ω with θ∗ being the only stationary

point and ∂θQ(θ | φ) is continuous in θ and φ. Then θ(i) converges to the unique

maximizer θ∗ of l(θ, y) which is the MLE.

15.4. EM algorithm in Bayesian estimation. In this section we show how the
EM algorithm can be used to produce a maximum a posteriori (MAP) estimate in
a Bayesian framework.

Suppose we have a prior density fΘ(θ) for Θ and we write fΘ|Y (θ | y) and
fΘ|X(θ | x) for the posterior of the observed and complete data, respectively. Then
the MAP estimate is the value of θ that maximizes

log fΘ|Y (θ | y) = log fY |Θ(y | θ) + log fΘ(θ).

The EM algorithm can then be implemented as follows.

E-step: Compute (ignoring terms that does not depend on the parameter)

Eθ(i) [log fΘ|X(θ | X) | Y = y] = Q(θ | θ(i)) + log fΘ(θ).

M -step: Choose θ(i+1) to maximize this expression among θ.

16. Monte Carlo EM algorithm

In some applications of the EM algorithm the E-step is complex and does not
admit a closed form solution. That is, the Q(θ | θ(i)) function cannot be computed
explicitly. A solution is provided by evaluating the Q(θ | θ(i)) function by Monte
Carlo methods. This will then be called the MCEM algorithm. Note that we can
write

Q(θ | θ(i)) = Eθ(i) [log fX|Θ(X | θ) | Y ]

= Eθ(i) [log fX|Θ((Y, Z) | θ) | Y ].

The MCEM algorithm consists of the following steps. Suppose we observe Y = y.

• (MC E-step) On the (i + 1)th iteration, draw z1, . . . , z(M) from fZ|Y,Θ(· |

y, θ(i)). Approximate the Q-function as

Q(θ | θ(i)) =
1

M

M
∑

m=1

log fX|Θ((y, z
m) | θ).
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• (M -step) Maximize the approximate Q(θ | θ(i)) and put θ(i+1) as the max-
imizer.

Example 25. In the multinomial example it would look as follows (although it is
not needed there because explicit computations are possible).

The missing data Z = Y12 which, conditionally on Y1 = y1 and Θ = θ(i) has
Binomial distribution Bin(y1, θ

(i)/(2+ θ(i))). In the MC E-step we would generate
z(1), . . . , z(M) from this Binomial distribution. The approximate Q function is then
given by

Q(θ | θ(i)) =
1

M

M
∑

m=1

log fX|Θ((y, z
m) | θ)

= (z̄M + y4) log θ + (y2 + y3) log(1− θ),

where z̄M = M−1
∑M

i=1 z
(i). Thus, the updated θ(i+1) becomes

θ(i+1) =
z̄M + y4

z̄M + y4 + y2 + y3
.

In the Bayesian setting we want to compute

Eθ(i) [log fΘ|X(θ | X) | Y ] =

∫

log fΘ|X(θ | (Y, z))fZ|Y,Θ(z | Y, θ(i))νz(dz), (16.1)

in the E-step.
The MCEM algorithm then consists of the following steps. Suppose we observe

Y = y.

• (MC E-step) On the (i + 1)th iteration, draw z1, . . . , z(M) from fZ|Y,Θ(· |

y, θ(i)). Approximate the function (16.1) by

1

M

M
∑

m=1

log fΘ|X(θ | zm, y)

• (M -step) Maximize this function and put θ(i+1) as the maximizer.

For the MCEM algorithm monotonicity propeties are lost, but there are results
that say that in certain cases the algorithm gets close to a maximizer with high
probability.

16.1. Stochastic EM algorithm. A particular instance of the MCEM algorithm
has recieved the name stochastic EM algorithm. It is actually just the MCEM with
M = 1 (the number of samples).

Thus, the stochastic EM algorithm then consists of the following steps. Suppose
we observe Y = y.

• (MC E-step) On the (i+1)th iteration, draw z from fZ|Y,Θ(· | y, θ
(i)). Plug

it in as the true value of z so that the likelihood function is l(θ, (y, z)).
• (M -step) Maximize this function and put θ(i+1) as the maximizer.

The stochastic EM algorithm prevents the sequence from staying near an unsta-
ble stationary point of the likelihood function. The sequence of estimates actually
form an ergodic Markov chain and converges weakly to a stationary distribution.
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